App & Browser Testing Made Easy

Give your users a seamless experience by testing on 3000+ real devices and browsers. Don't compromise with emulators and simulators

Get Started free
Home Guide Python For DevOps: An Ultimate Guide

Python For DevOps: An Ultimate Guide

By Sakshi Pandey, Community Contributor -

DevOps consists of a collection of technologies, work procedures, and techniques intended to increase the effectiveness and efficiency of the software development lifecycle. One of the core principles of DevOps is continuous integration and delivery. 

The main contributor to success of CI/CD is the creation of a team of individuals who can develop, test, and maintain software themselves. This process was created to help businesses make themselves more competitive by producing software more quickly, without sacrificing quality. Not only does this greatly speed up software development and productivity, but it also ensures better maintenance of the application. Due to the foreknowledge the team has of all aspects of the software, new features/updates can be rolled out quickly.  

Python is a high level programming language prized for its extensive libraries, flexibility, and ease of use. All of these traits have made Python one of the most popular languages to use for DevOps.

Python developers surveyed in 2021 by JetBrains 1Source

40% of the Python developers surveyed in 2021 by JetBrains claimed to work with Python as a primary activity in the fields of DevOps/System Administration/Writing automation scripts; With 48% claiming to work with Python as a secondary activity in the same fields, and 12% claiming to work in the aforementioned fields with Python as a hobby.

Why should you use Python For DevOps?

  1. Python is an extremely popular high level scripting language that is used widely in the fields of web development, data analysis, data science, mobile app development, and game development.  
  2. It has extensive libraries which can be utilized for a wide variety of functions. 
  3. Python is popular for writing automation scripts and can be used with highly popular open source tools such as Selenium and Appium to write sophisticated automation scripts.
  4. Python has a great supportive community, and there are a lot of forums, guides, and tutorials to aid programmers.
  5. Python has gained popularity for also being very useful for data visualization. Libraries such as seaborn and matplotlib can be used to create aesthetic visual figures and graphs.
  6. Python is excellent for implementing machine learning, and has a wide variety of specialized ML libraries such as TensorFlow and SciPy.
  7. All Linux systems come pre-bundled with Python, making it a defacto go-to scripting language on these systems.
  8. Python can be used across different development testing and production environments, making it very productive for DevOps Processes.

How to use Python for DevOps Processes

Python is versatile and can be used in multiple stages of the DevOps lifecycle, from continuous monitoring to deployment. 

DevOps LifecycleSource

Following are some of the key uses of Python in the phases of the DevOps lifecycle:

  • Planning

Python has several libraries which make it particularly well suited to gather important statistics for the software during the planning and information gathering phase. Automation tools can be programmed to gather statistics, perform data cleaning, data manipulation, data analysis, and to create data visualizations. 

  • Development

Python can be used to write scripts which can configure tools, and automate tasks. In addition to this, Python has modules which make it easy for developers to interact with, and carry out tasks in databases such as SQLite, MySQL, MongoDB, and PostgreSQL. Python can also be used to interact with version control systems through the Gitapi module.  Lastly, the ability of Python to be used across various development environments, and the availability of modules such as OS and subprocess to interact with the underlying operating system and spawn child processes can be very useful to developers.

  • Build and Testing

Python can be used to write automated scripts to help with the build automation process. Testing frameworks like Selenium and libraries like pytest can be used to write complex and highly effective automation test scripts in Python. Additionally, if Django is used in the development phase then the built-in testing framework in Django can also be utilized.

  • Deployment

Python can also be used to script the deployment programs. Additionally, it can assist with the deployment, configuration, and management of the applications from the development phase to the testing and production environments. Purely written in Python, configuration management tools like Ansible can be made more productive by writing additional custom modules in Python.

Python’s well-known Cuisine and Fabric modules are very popularly  used in DevOps for the deployment phase.

  • Monitoring and Operations

With the aid of Python, scripts that can be used for automation of daily monitoring tasks can be written. These scripts can have the additional functionality of generating and sending out notifications to all relevant parties in case of any issue/error found.

Python also has cross-platform libraries for process and system monitoring, such as psutils which can be highly helpful to monitor and check for any inconsistencies or errors during the development, build, testing, and deployment phases. Python scripts can be written to routinely check drivers, network devices, and also to automate any sysadmin tasks.

Python For DevOps: An Ultimate Guide

Popular Python Libraries and Tools to Automate DevOps Processes

Some of the popular Python Libraries and Tools that are used for DevOps Automation in Python are: 

  1. Pandas
  2. Selenium
  3. Pytest
  4. Beautiful Soup
  5. Jenkins
  6. SciPy
  7. Behave
  8. Ansible
  9. BrowserStack Automate
  10. TensorFlow

1. Pandas

PandasThe Pandas module is a highly useful module for data analysis and very popular among data analysts and data science engineers. The Pandas dataframe is capable of efficiently handling large amounts of data and also allows users to gain insights and extract useful information from the data.

2. Selenium

SeleniumSelenium is a very well-liked open-source Python library renowned  for aiding developers design automated test cases which can be executed across different browsers through drivers.Testing the functionality of a button, or carrying out tasks such as filling out a form, navigating a web application, these are all tasks which can be done using sub-modules and drivers with Selenium.

Selenium offers a vast collection of open source tools that are helpful for all types of automation problems. Automation testing frequently takes a long time, creating test cases, carrying them out, and verifying them can be difficult. However the benefits far outweigh the drawbacks. There are so many different browser versions, operating systems, and devices that tests need to be run on, and without automation testing it would be nearly impossible to test on all browser/OS/device combinations. 

However this testing is possible through platforms like BrowserStack. BrowserStack’s Cloud Selenium Grid, enables developers to execute automation test scripts on more than 3000 actual device/browser/OS combinations. 

Try BrowserStack for Free

In addition to this, cross browser testing can be done on a wider scale and further optimized with parallel testing, this feature reduces time by executing multiple tasks simultaneously.

3. Pytest

PytestPyTest is a testing framework that enables users to write scalable and straightforward test cases. PyTest is well-liked because it has an easy to learn syntax, allows developers to parallely execute multiple tests, and because it is open-source. 

 

4. Beautiful Soup

Beautiful SoupBeautiful Soup in Python is the most useful module for parsing XML and HTML data in order to obtain useful information. Filtering the HTML data by tags and gleaning statistics regarding the website are all easily accomplished by using the modules in the BeautifulSoup web scraping library. This library has several versatile uses that allow developers to navigate,manipulate, and extract data from applications efficiently.

5. Jenkins

JenkinsJenkins is the oldest  open source CI/CD automation server, and thus also has one of the largest user bases. Its main claim to fame is the over 1800 user-contributed plugins it has, and how versatile these plugins are. In addition to these plugins there is also a lot of documentation available, along with guides and helpful communities to provide support for new Jenkins users. 

Jenkins may be used with Python and is compatible with most popular OS such as  Windows, Macintosh, and Linux. Lastly, Jenkins is self-hosted leading its users having greater control over customizing and tailoring their CI/CD pipelines according to their needs.

6. SciPy

SciPyThe SciPy library is an open-source library used to solve mathematical and scientific problems in Python. This library is built on the Numpy library and therefore builds further on the features offered by Numpy, for example it is able to handle more complex linear algebra and has more features to solve such problems in comparison to Numpy. SciPy contains modules for linear algebra,  statistics, image manipulation and processing, numerical integration, optimization, and other problem solving modules required to tackle scientific problems.

7. Behave

BehaveBehave  is a BDD framework, a behavior driven development framework, which is integrated with automation frameworks such as Selenium. It essentially functions as a layer which defines certain behaviors to be followed in different scenarios  when executing automation test cases. 

 

 

8. Ansible

AnsibleAnsible is a powerful automation tool that is particularly useful for system management duties. This tool offers straightforward yet effective automation for tasks a system administrator would need to perform on a regular basis. Some of its main functions are performing upgrades, configuration management, and carrying out application deployment. Ansible is written in python, and supplementary scripts can be written in python to extend its functionality.

9. BrowserStack Automate

BrowserStack AutomateBrowserStack Automate allows users to use a variety of frameworks and tools like Selenium. Python is compatible and can be used with this testing platform to write sophisticated test scripts. 

It also offers parallel testing, allowing users to run tests in parallel to speed up test execution.  Popular CI/CD tools like Jenkins, Bamboo, Amazon AWS pipelines, Travis CI, and many others can be integrated with BrowserStack Automate.

The ultimate goal of DevOps is to provide faultless software under constrained timeframes. Doing manual and automated tests on actual browsers and devices is the only way to successfully complete this extensive software testing under real user conditions

Simulators and emulators are inadequate for thorough testing because they are unable to replicate all real-world circumstances (low battery, unstable networks, pop-ups, etc.). This is why developers use tools such as BrowserStack Automate to test their code against 3000+ Real Devices across a plethora of popular browsers and OS systems.

Try BrowserStack for Free

10. TensorFlow

TensorflowTensorFlow is an open-source library which  was created by Google. Its main functions are to handle deep learning and machine learning. It is additionally used for statistical and predictive analytics. This library is particularly popular among data scientists in order to design advanced problem-solving applications. The major uses of TensorFlow are for classification, clustering, and prediction. Some common applications of this library are  optical character recognition, segmentation, text/image classification, and object detection.

Conclusion

Programming is essential in the DevOps lifecycle and a versatile, efficient, and easy to learn language like Python is representative of everything DevOps stands for. 

All DevOps engineers would greatly benefit from learning Python since it can be used at every phase of the DevOps lifecycle. In addition to this several tools such as Ansible are coded purely in Python, and whenever any optimizations or add-ons need to be made to the functionality of the tool it’s best if it can be done in Python. 

These factors, as well as the fact that Python can be used across various development and testing environments, make Python a very popular and productive language for DevOps teams.

Tags
Automation Testing CI CD Tools DevOps

Featured Articles

What is the ultimate goal of DevOps?

DevOps Testing Strategy

App & Browser Testing Made Easy

Seamlessly test across 20,000+ real devices with BrowserStack